Difference between revisions of "1.1"

From The Algorithm Design Manual Solution Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
''a'' + ''b'' < min(''a,b'') <-> ''a'' < 0 /\ ''b'' < 0
+
<math>a + b < \min(a,b) \Leftrightarrow a < 0 \and b < 0</math>
 
 
(find way to fix math symbols)
 
  
 
----
 
----
  
If both ''a'' and ''b'' are negative, ''a'' + ''b''< min(''a, b''). For example
+
If both ''a'' and ''b'' are negative, <math>a + b < min(a, b)</math>. For example
  
       ''a'' = -5
+
       <math>a = -5</math>
       ''b'' = -7
+
       <math>b = -7</math>
       ''a'' + ''b'' = -5 + (-7) = -12
+
       <math>a+ b = -5 + (-7) = -12</math>
       min(-5, -7) = -7
+
       <math>min(-5, -7) = -7</math>
  
  
 
Back to [[Chapter 1]]
 
Back to [[Chapter 1]]

Latest revision as of 20:07, 31 August 2020

[math]\displaystyle{ a + b \lt \min(a,b) \Leftrightarrow a \lt 0 \and b \lt 0 }[/math]


If both a and b are negative, [math]\displaystyle{ a + b \lt min(a, b) }[/math]. For example

     [math]\displaystyle{ a = -5 }[/math]
     [math]\displaystyle{ b = -7 }[/math]
     [math]\displaystyle{ a+ b = -5 + (-7) = -12 }[/math]
     [math]\displaystyle{ min(-5, -7) = -7 }[/math]


Back to Chapter 1