Difference between revisions of "1.1"
Jump to navigation
Jump to search
(Created page with "''a'' + ''b'' < min(''a,b'') <-> ''a'' < 0 /\ ''b'' < 0 ---- If both ''a'' and ''b'' are negative, ''a'' + ''b''< min(''a, b''). For example ''a'' = -5 ''b'' =...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <math>a + b < \min(a,b) \Leftrightarrow a < 0 \and b < 0</math> | |
---- | ---- | ||
− | If both ''a'' and ''b'' are negative, | + | If both ''a'' and ''b'' are negative, <math>a + b < min(a, b)</math>. For example |
− | + | <math>a = -5</math> | |
− | + | <math>b = -7</math> | |
− | + | <math>a+ b = -5 + (-7) = -12</math> | |
− | min(-5, -7) = -7 | + | <math>min(-5, -7) = -7</math> |
Back to [[Chapter 1]] | Back to [[Chapter 1]] |
Latest revision as of 20:07, 31 August 2020
[math]\displaystyle{ a + b \lt \min(a,b) \Leftrightarrow a \lt 0 \and b \lt 0 }[/math]
If both a and b are negative, [math]\displaystyle{ a + b \lt min(a, b) }[/math]. For example
[math]\displaystyle{ a = -5 }[/math] [math]\displaystyle{ b = -7 }[/math] [math]\displaystyle{ a+ b = -5 + (-7) = -12 }[/math] [math]\displaystyle{ min(-5, -7) = -7 }[/math]
Back to Chapter 1