Chapter 6
Hashing and Randomized Algorithms
Probability
- 6.1. You are given [math]\displaystyle{ n }[/math] unbiased coins, and perform the following process to generate all heads. Toss all [math]\displaystyle{ n }[/math] coins independently at random onto a table. Each round consists of picking up all the tails-up coins and tossing them onto the table again. You repeat until all coins are heads.
- (a) What is the expected number of rounds performed by the process?
- (b) What is the expected number of coin tosses performed by the process?
- 6.2. Suppose we flip [math]\displaystyle{ n }[/math] coins each of known bias, such that [math]\displaystyle{ p_i }[/math] is the probability of the [math]\displaystyle{ i }[/math]th coin being a head. Present an efficient algorithm to determine the exact probability of getting exactly [math]\displaystyle{ k }[/math] heads given [math]\displaystyle{ p_1, . . . , p_n \in [0, 1] }[/math].
- 6.3. An inversion of a permutation is a pair of elements that are out of order.
- (a) Show that a permutation of [math]\displaystyle{ n }[/math] items has at most [math]\displaystyle{ n(n - 1)/2 }[/math] inversions. Which permutation(s) have exactly n(n - 1)/2 inversions?
- (b) Let P be a permutation and [math]\displaystyle{ P^r }[/math] be the reversal of this permutation. Show that [math]\displaystyle{ P }[/math] and [math]\displaystyle{ P^r }[/math] have a total of exactly [math]\displaystyle{ n(n - 1)/2 }[/math] inversions.
- (c) Use the previous result to argue that the expected number of inversions in a random permutation is [math]\displaystyle{ n(n - 1)/4 }[/math].
- 6.4. A derangement is a permutation [math]\displaystyle{ p }[/math] of [math]\displaystyle{ {1, . . . , n} }[/math] such that no item is in its proper position, that is, [math]\displaystyle{ p_i \neq i }[/math] for all [math]\displaystyle{ 1 \leq i \leq n }[/math]. What is the probability that a random permutation is a derangement?
Hashing
- 6.6
Randomized Algorithms
- 6.8
- 6.10
- 6.12
Back to Chapter List