Chapter 2
Contents
Algorithm Analysis
Program Analysis
- 2.1. What value is returned by the following function? Express your answer as a function of [math]\displaystyle{ n }[/math]. Give the worst-case running time using the Big Oh notation.
mystery(n) r:=0 for i:=1 to n-1 do for j:=i+1 to n do for k:=1 to j do r:=r+1 return(r)
- 2.2. What value is returned by the following function? Express your answer as a function of [math]\displaystyle{ n }[/math]. Give the worst-case running time using Big Oh notation.
pesky(n) r:=0 for i:=1 to n do for j:=1 to i do for k:=j to i+j do r:=r+1 return(r)
- 2.3. What value is returned by the following function? Express your answer as a function of [math]\displaystyle{ n }[/math]. Give the worst-case running time using Big Oh notation.
prestiferous(n) r:=0 for i:=1 to n do for j:=1 to i do for k:=j to i+j do for l:=1 to i+j-k do r:=r+1 return(r)
- 2.4. What value is returned by the following function? Express your answer as a function of [math]\displaystyle{ n }[/math]. Give the worst-case running time using Big Oh notation.
conundrum([math]\displaystyle{ n }[/math]) [math]\displaystyle{ r:=0 }[/math] for [math]\displaystyle{ i:=1 }[/math] to [math]\displaystyle{ n }[/math] do for [math]\displaystyle{ j:=i+1 }[/math] to [math]\displaystyle{ n }[/math] do for [math]\displaystyle{ k:=i+j-1 }[/math] to [math]\displaystyle{ n }[/math] do [math]\displaystyle{ r:=r+1 }[/math] return([math]\displaystyle{ r }[/math])
- 2.6. Suppose the following algorithm is used to evaluate the polynomial
- [math]\displaystyle{ p(x)=a_n x^n +a_{n-1} x^{n-1}+ \ldots + a_1 x +a_0 }[/math]
[math]\displaystyle{ p:=a_0; }[/math] [math]\displaystyle{ xpower:=1; }[/math] for [math]\displaystyle{ i:=1 }[/math] to [math]\displaystyle{ n }[/math] do [math]\displaystyle{ xpower:=x*xpower; }[/math] [math]\displaystyle{ p:=p+a_i * xpower }[/math] end
- How many multiplications are done in the worst-case? How many additions?
- How many multiplications are done on the average?
- Can you improve this algorithm?
- 2.7. Prove that the following algorithm for computing the maximum value in an array [math]\displaystyle{ A[1..n] }[/math] is correct.
max(A) [math]\displaystyle{ m:=A[1] }[/math] for [math]\displaystyle{ i:=2 }[/math] to n do if [math]\displaystyle{ A[i] \gt m }[/math] then [math]\displaystyle{ m:=A[i] }[/math] return (m)
Big Oh
- 2.8
- 2.9
- 2.10
- 2.11
- 2.12
- 2.13
- 2.14
- 2.15
- 2.16
- 2.17
- 2.18
- 2.19
- 2.20
- 2.21
- 2.22
- 2.23
- 2.24
- 2.25
- 2.26
- 2.27
- 2.28
- 2.29
- 2.30
- 2.31
- 2.32
- 2.33
- 2.34
- 2.35
- 2.36
Summations
- 2.37
- 2.38
- 2.39
- 2.40
- 2.41
- 2.42
- 2.43
Logartihms
- 2.44
- 2.45
- 2.46
- 2.47
Interview Problems
- 2.48
- 2.49
- 2.50
- 2.51
- 2.52
- 2.53
- 2.54
- 2.55
Back to Chapter List