a + b < min ( a , b ) ⇔ a < 0 ∧ b < 0 {\displaystyle a+b<\min(a,b)\Leftrightarrow a<0\land b<0}
If both a and b are negative, a + b < m i n ( a , b ) {\displaystyle a+b<min(a,b)} . For example
a = − 5 {\displaystyle a=-5} b = − 7 {\displaystyle b=-7} a + b = − 5 + ( − 7 ) = − 12 {\displaystyle a+b=-5+(-7)=-12} m i n ( − 5 , − 7 ) = − 7 {\displaystyle min(-5,-7)=-7}
Back to Chapter 1