# Algorithm Analysis

### Program Analysis

2.1. What value is returned by the following function? Express your answer as a function of $n$ . Give the worst-case running time using the Big Oh notation.
  mystery(n)
r:=0
for i:=1 to n-1 do
for j:=i+1 to n do
for k:=1 to j do
r:=r+1
return(r)


2.2. What value is returned by the following function? Express your answer as a function of $n$ . Give the worst-case running time using Big Oh notation.
   pesky(n)
r:=0
for i:=1 to n do
for j:=1 to i do
for k:=j to i+j do
r:=r+1
return(r)


2.3. What value is returned by the following function? Express your answer as a function of $n$ . Give the worst-case running time using Big Oh notation.
   prestiferous(n)
r:=0
for i:=1 to n do
for j:=1 to i do
for k:=j to i+j do
for l:=1 to i+j-k do
r:=r+1
return(r)


2.4. What value is returned by the following function? Express your answer as a function of $n$ . Give the worst-case running time using Big Oh notation.
  conundrum($n$ )
$r:=0$ for $i:=1$ to $n$ do
for $j:=i+1$ to $n$ do
for $k:=i+j-1$ to $n$ do
$r:=r+1$ return($r$ )


2.5
2.6. Suppose the following algorithm is used to evaluate the polynomial
$p(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots +a_{1}x+a_{0}$ $p:=a_{0};$ $xpower:=1;$ for $i:=1$ to $n$ do
$xpower:=x*xpower;$ $p:=p+a_{i}*xpower$ end

1. How many multiplications are done in the worst-case? How many additions?
2. How many multiplications are done on the average?
3. Can you improve this algorithm?

2.7. Prove that the following algorithm for computing the maximum value in an array $A[1..n]$ is correct.
  max(A)
$m:=A$ for $i:=2$ to n do
if $A[i]>m$ then $m:=A[i]$ return (m)


### Big Oh

2.8. #Is $2^{n+1}=O(2^{n})$ ?
1. Is $2^{2n}=O(2^{n})$ ?

2.9. For each of the following pairs of functions, either $f(n)$ is in $O(g(n))$ , $f(n)$ is in $\Omega (g(n))$ , or $f(n)=\Theta (g(n))$ . Determine which relationship is correct and briefly explain why.
1. $f(n)=\log n^{2}$ ; $g(n)=\log n$ + $5$ 2. $f(n)={\sqrt {n}}$ ; $g(n)=\log n^{2}$ 3. $f(n)=\log ^{2}n$ ; $g(n)=\log n$ 4. $f(n)=n$ ; $g(n)=\log ^{2}n$ 5. $f(n)=n\log n+n$ ; $g(n)=\log n$ 6. $f(n)=10$ ; $g(n)=\log 10$ 7. $f(n)=2^{n}$ ; $g(n)=10n^{2}$ 8. $f(n)=2^{n}$ ; $g(n)=3^{n}$ 2.10. For each of the following pairs of functions $f(n)$ and $g(n)$ , determine whether $f(n)=O(g(n))$ , $g(n)=O(f(n))$ , or both.
1. $f(n)=(n^{2}-n)/2$ , $g(n)=6n$ 2. $f(n)=n+2{\sqrt {n}}$ , $g(n)=n^{2}$ 3. $f(n)=n\log n$ , $g(n)=n{\sqrt {n}}/2$ 4. $f(n)=n+\log n$ , $g(n)={\sqrt {n}}$ 5. $f(n)=2(\log n)^{2}$ , $g(n)=\log n+1$ 6. $f(n)=4n\log n+n$ , $g(n)=(n^{2}-n)/2$ 2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36

2.37
2.38
2.39
2.40
2.41
2.42
2.43

2.44
2.45
2.46
2.47

### Interview Problems

2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55

Back to Chapter List