Difference between revisions of "TADM2E 3.13"
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | |||
Before outlining the solution, consider that a binary tree can satisfy the O(logn) requirement for both the Add(i, y) and Partial-sum(i) functions. In so doing, we initialize the binary tree with all non-leaf nodes equal to the sum of all values of nodes of their children, where each node has the following structure: | Before outlining the solution, consider that a binary tree can satisfy the O(logn) requirement for both the Add(i, y) and Partial-sum(i) functions. In so doing, we initialize the binary tree with all non-leaf nodes equal to the sum of all values of nodes of their children, where each node has the following structure: | ||
− | class BNode { | + | class BNode { |
− | + | BNode left, right; | |
− | + | int min; // minimum index of A[] contained by a child | |
− | + | int max; // maximum index of A[] contained by a child | |
− | } | + | int value; // sum of A[min..max] |
+ | } | ||
− | Then, Add(i, y) will add y | + | Then, <math>Add(i, y)</math> will add <math>y</math> to the value of each tree node, starting from the root, as well as the leaves defined in <math>A</math>. Likewise, <math>Partial-sum(i)</math> is implemented recursively using the structure of the tree to ensure a clean partition of sections of A. |
Unfortunately, the problem allows only an n-size array as a workspace. However, consider that a binary tree with n leaves will have no more than n - 1 non-leaf nodes. Using the heapsort's method of organizing the non-leaf nodes in an array (see heapsort), we can satisfy this requirement: | Unfortunately, the problem allows only an n-size array as a workspace. However, consider that a binary tree with n leaves will have no more than n - 1 non-leaf nodes. Using the heapsort's method of organizing the non-leaf nodes in an array (see heapsort), we can satisfy this requirement: | ||
− | Let S[1..m] (m < n) be such an array of BNode objects. | + | Let <math>S[1..m] (m < n)</math> be such an array of BNode objects. |
+ | |||
+ | <math>S[0]</math> is the root, with value equal to the sum of <math>A[0..n]</math>. | ||
+ | <math>S[1]</math> is root's left child, with value equal to the sum <math>A[0..n/2]</math>. | ||
+ | <math>S[2]</math> is root's right child, with value equal to the sum of <math>A[n/2+1..n]</math>. | ||
− | S[ | + | In general, <math>S[i]</math> will have value equal to the sum of <math>S[i]</math>'s children at <math>S[2*i+1]</math> and <math>S[2*i +2]</math>. See solution in Java below. |
− | S[ | ||
− | S[2] | ||
− | + | public class SumKeeper { | |
+ | private float[] A; | ||
+ | private BNode[] S; | ||
+ | private int sMax; | ||
+ | class BNode { | ||
+ | BNode(int min, int max, float value) { | ||
+ | this.min = min; | ||
+ | this.max = max; | ||
+ | this.value = value; | ||
+ | } | ||
+ | int min; | ||
+ | int max; | ||
+ | float value; | ||
+ | } | ||
+ | public SumKeeper(float[] A) { | ||
+ | this.A = A; | ||
+ | int ln2 = (int)Math.ceil(Math.log(A.length) / Math.log(2)); | ||
+ | this.S = new BNode[(0x1 << ln2) - 1]; | ||
+ | initS(0, A.length - 1, 0); | ||
+ | } | ||
+ | private void initS(int min, int max, int sNode) { | ||
+ | if(sNode > sMax) sMax = sNode; | ||
+ | if(min >= max) | ||
+ | S[sNode] = new BNode(min, max, A[min]); | ||
+ | else if (min == max - 1) | ||
+ | S[sNode] = new BNode(min, max, A[min] + A[max]); | ||
+ | else { | ||
+ | int mid = min + (max - min) / 2; | ||
+ | initS(min, mid, 2 * sNode + 1); | ||
+ | initS(mid + 1, max, 2 * sNode + 2); | ||
+ | float sum = S[2 * sNode + 1].value + S[2 * sNode + 2].value; | ||
+ | S[sNode] = new BNode(min, max, sum); | ||
+ | } | ||
+ | } | ||
+ | public void add(int i, float y) { | ||
+ | if(i - 1 > A.length) throw new IndexOutOfBoundsException(); | ||
+ | A[i] += y; | ||
+ | addS(i, y, 0); | ||
+ | } | ||
+ | private void addS(int i, float y, int sNode) { | ||
+ | if(sNode > sMax) return; | ||
+ | S[sNode].value += y; | ||
+ | int mid = S[sNode].min + (S[sNode].max - S[sNode].min) / 2; | ||
+ | if(mid >= i) { | ||
+ | addS(i, y, 2 * sNode + 1); | ||
+ | } else { | ||
+ | addS(i, y, 2 * sNode + 2); | ||
+ | } | ||
+ | } | ||
+ | public float partialSum(int i) { | ||
+ | return partialSum(i, 0); | ||
+ | } | ||
+ | private float partialSum(int i, int sNode) { | ||
+ | if(sNode > sMax) return A[i]; | ||
+ | int mid = S[sNode].min + (S[sNode].max - S[sNode].min) / 2; | ||
+ | if(S[sNode].max == i) { | ||
+ | return S[sNode].value; | ||
+ | } else if(mid >= i) { | ||
+ | return partialSum(i, 2 * sNode + 1); | ||
+ | } else { | ||
+ | return S[2 * sNode + 1].value + partialSum(i, 2 * sNode + 2); | ||
+ | } | ||
+ | } | ||
+ | } |
Latest revision as of 20:16, 9 July 2017
Before outlining the solution, consider that a binary tree can satisfy the O(logn) requirement for both the Add(i, y) and Partial-sum(i) functions. In so doing, we initialize the binary tree with all non-leaf nodes equal to the sum of all values of nodes of their children, where each node has the following structure:
class BNode { BNode left, right; int min; // minimum index of A[] contained by a child int max; // maximum index of A[] contained by a child int value; // sum of A[min..max] }
Then, $ Add(i, y) $ will add $ y $ to the value of each tree node, starting from the root, as well as the leaves defined in $ A $. Likewise, $ Partial-sum(i) $ is implemented recursively using the structure of the tree to ensure a clean partition of sections of A.
Unfortunately, the problem allows only an n-size array as a workspace. However, consider that a binary tree with n leaves will have no more than n - 1 non-leaf nodes. Using the heapsort's method of organizing the non-leaf nodes in an array (see heapsort), we can satisfy this requirement:
Let $ S[1..m] (m < n) $ be such an array of BNode objects.
$ S[0] $ is the root, with value equal to the sum of $ A[0..n] $. $ S[1] $ is root's left child, with value equal to the sum $ A[0..n/2] $. $ S[2] $ is root's right child, with value equal to the sum of $ A[n/2+1..n] $.
In general, $ S[i] $ will have value equal to the sum of $ S[i] $'s children at $ S[2*i+1] $ and $ S[2*i +2] $. See solution in Java below.
public class SumKeeper { private float[] A; private BNode[] S; private int sMax; class BNode { BNode(int min, int max, float value) { this.min = min; this.max = max; this.value = value; } int min; int max; float value; } public SumKeeper(float[] A) { this.A = A; int ln2 = (int)Math.ceil(Math.log(A.length) / Math.log(2)); this.S = new BNode[(0x1 << ln2) - 1]; initS(0, A.length - 1, 0); } private void initS(int min, int max, int sNode) { if(sNode > sMax) sMax = sNode; if(min >= max) S[sNode] = new BNode(min, max, A[min]); else if (min == max - 1) S[sNode] = new BNode(min, max, A[min] + A[max]); else { int mid = min + (max - min) / 2; initS(min, mid, 2 * sNode + 1); initS(mid + 1, max, 2 * sNode + 2); float sum = S[2 * sNode + 1].value + S[2 * sNode + 2].value; S[sNode] = new BNode(min, max, sum); } } public void add(int i, float y) { if(i - 1 > A.length) throw new IndexOutOfBoundsException(); A[i] += y; addS(i, y, 0); } private void addS(int i, float y, int sNode) { if(sNode > sMax) return; S[sNode].value += y; int mid = S[sNode].min + (S[sNode].max - S[sNode].min) / 2; if(mid >= i) { addS(i, y, 2 * sNode + 1); } else { addS(i, y, 2 * sNode + 2); } } public float partialSum(int i) { return partialSum(i, 0); } private float partialSum(int i, int sNode) { if(sNode > sMax) return A[i]; int mid = S[sNode].min + (S[sNode].max - S[sNode].min) / 2; if(S[sNode].max == i) { return S[sNode].value; } else if(mid >= i) { return partialSum(i, 2 * sNode + 1); } else { return S[2 * sNode + 1].value + partialSum(i, 2 * sNode + 2); } } }