Difference between revisions of "TADM2E 1.31"
From Algorithm Wiki
(Recovering wiki) |
(Fixing grammatical errors. Simplifying page) |
||
Line 1: | Line 1: | ||
− | + | Assumptions: | |
− | + | : approx 400000 cars | |
− | each car needs to refuel once a week | + | : each car needs to refuel once a week |
− | each gas station is open 10 hours a day and refuels 10 cars an hour | + | : each gas station is open 10 hours a day and refuels 10 cars an hour |
− | + | : there are enough stations to refuel all cars once per week | |
Calculation: | Calculation: | ||
− | cars that can be fueled by 1 station in 1 week | + | : cars that can be fueled by 1 station in 1 week |
− | 10*10*7=700 | + | : 10*10*7=700 |
− | number of gas stations (rounded up): | + | : a number of gas stations (rounded up): |
− | ceil(400000/700)=572 | + | : ceil(400000/700)=572 |
− | |||
− | |||
---- | ---- | ||
− | |||
'''A slightly different approach''': | '''A slightly different approach''': | ||
− | * | + | * approx 300 mln cars in the US (1 car per each citizen). |
* each station is open 12hr a day, has 6 places for taking fuel, each fueling takes about 6 min | * each station is open 12hr a day, has 6 places for taking fuel, each fueling takes about 6 min | ||
− | + | * amount of cars using given gas station daily: <math>6 * 12 * \frac{60}{6} = 6 * 120 = 720 </math> | |
− | + | * gas station (at least in Europe) are used always used, so: <math>\frac{300 000 000}{720} \approx 333 000</math> gas stations. | |
− | |||
− |
Revision as of 22:18, 3 January 2020
Assumptions:
- approx 400000 cars
- each car needs to refuel once a week
- each gas station is open 10 hours a day and refuels 10 cars an hour
- there are enough stations to refuel all cars once per week
Calculation:
- cars that can be fueled by 1 station in 1 week
- 10*10*7=700
- a number of gas stations (rounded up):
- ceil(400000/700)=572
A slightly different approach:
- approx 300 mln cars in the US (1 car per each citizen).
- each station is open 12hr a day, has 6 places for taking fuel, each fueling takes about 6 min
- amount of cars using given gas station daily: $ 6 * 12 * \frac{60}{6} = 6 * 120 = 720 $
- gas station (at least in Europe) are used always used, so: $ \frac{300 000 000}{720} \approx 333 000 $ gas stations.