Difference between revisions of "Help:Trolls on wheels!"
(Recovering wiki) |
m (Trampin' all the way moved page TADM2E 1.6 to Help:Trolls on wheels!) |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | + | Counter-example 1: | |
− | <math> | + | <math>U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}</math> |
<br/> | <br/> | ||
− | <math> | + | <math>S_1 = \{1, 2, 4, 6, 8, 10, 12, 14\}</math> |
<br/> | <br/> | ||
− | <math> | + | <math>S_2 = \{3, 5, 9, 11\}</math> |
<br/> | <br/> | ||
− | <math> | + | <math>S_3 = \{7, 13\}</math> |
<br/> | <br/> | ||
− | <math>S_5 = \{9, 10, 11, 12, 13, 14, | + | <math>S_4 = \{1, 2, 3, 4, 5, 6, 7\}</math> |
+ | <br/> | ||
+ | <math>S_5 = \{8, 9, 10, 11, 12, 13, 14\}</math> | ||
+ | |||
+ | There is an optimal solution: <math>S_4, S_5</math> (2 subsets). | ||
+ | <br/> | ||
+ | A greedy algorithm will choose <math>S_1, S_2, S_3</math> (3 subsets): | ||
+ | <br/> | ||
+ | 1. <math>S_1</math> since it contains 8 uncovered elements (more than any other subset) | ||
+ | <br/> | ||
+ | 2. <math>S_2</math> since it then contains 4 uncovered elements (more than any other subset) | ||
+ | <br/> | ||
+ | 3. <math>S_3</math> since it then contains 2 uncovered elements (more than any other subset) | ||
+ | |||
+ | |||
+ | Counter-example 2: | ||
+ | |||
+ | <math>U = \{1, 2, 3, 4, 5\}</math> | ||
+ | <br/> | ||
+ | <math>S_1 = \{1, 2, 3\}</math> | ||
+ | <br/> | ||
+ | <math>S_2 = \{1, 2, 4\}</math> | ||
+ | <br/> | ||
+ | <math>S_3 = \{4, 5\}</math> | ||
+ | |||
+ | There is an optimal solution <math>S_1, S_3</math>. | ||
+ | <br/> | ||
+ | But the greedy algorithm might choose <math>S_2, S_3, S_1</math>. | ||
+ | |||
+ | Counter-example 3: | ||
− | + | <math>U = \{1, 2, 3, 4, 5, 6\}</math> | |
+ | <br/> | ||
+ | <math>S_1 = \{2, 3, 4, 5\}</math> | ||
+ | <br/> | ||
+ | <math>S_2 = \{1, 2, 3\}</math> | ||
+ | <br/> | ||
+ | <math>S_3 = \{4, 5, 6\}</math> | ||
+ | |||
+ | There is an optimal solution: <math>S_2, S_3</math> (2 subsets). | ||
+ | <br/> | ||
+ | A greedy algorithm will choose <math>S_1, S_2, S_3</math> (3 subsets) |
Latest revision as of 07:31, 15 April 2019
Counter-example 1:
$ U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\} $
$ S_1 = \{1, 2, 4, 6, 8, 10, 12, 14\} $
$ S_2 = \{3, 5, 9, 11\} $
$ S_3 = \{7, 13\} $
$ S_4 = \{1, 2, 3, 4, 5, 6, 7\} $
$ S_5 = \{8, 9, 10, 11, 12, 13, 14\} $
There is an optimal solution: $ S_4, S_5 $ (2 subsets).
A greedy algorithm will choose $ S_1, S_2, S_3 $ (3 subsets):
1. $ S_1 $ since it contains 8 uncovered elements (more than any other subset)
2. $ S_2 $ since it then contains 4 uncovered elements (more than any other subset)
3. $ S_3 $ since it then contains 2 uncovered elements (more than any other subset)
Counter-example 2:
$ U = \{1, 2, 3, 4, 5\} $
$ S_1 = \{1, 2, 3\} $
$ S_2 = \{1, 2, 4\} $
$ S_3 = \{4, 5\} $
There is an optimal solution $ S_1, S_3 $.
But the greedy algorithm might choose $ S_2, S_3, S_1 $.
Counter-example 3:
$ U = \{1, 2, 3, 4, 5, 6\} $
$ S_1 = \{2, 3, 4, 5\} $
$ S_2 = \{1, 2, 3\} $
$ S_3 = \{4, 5, 6\} $
There is an optimal solution: $ S_2, S_3 $ (2 subsets).
A greedy algorithm will choose $ S_1, S_2, S_3 $ (3 subsets)