Difference between revisions of "TADM2E 1.13"
From Algorithm Wiki
(Recovering wiki) |
|
(One intermediate revision by one other user not shown) | |
(No difference)
|
Latest revision as of 00:51, 1 August 2020
Call the statement $ S_n $ and the general term $ a_n $
Step 1: Show that the statement holds for the basis case $ n = 0 $
- $ a_0 = 0 \cdot (0 + 1)(0 + 2) = 0 $
- $ S_0 = \frac {0 \cdot (0 + 1)(0 + 2)(0 + 3)} {4} = \frac {0} {4} = 0 $
Since $ a_n = S_n $, the basis case is true.
Step 2: Assume that $ n = k $ holds.
- $ S_k = \frac {k(k + 1)(k + 2)(k + 3)} {4} $
Step 3: Show that on the assumption that the summation is true for k, it follows that it is true for k + 1.
- $ \begin{align} S_{k + 1} & = \sum_{i = 1}^k i(i + 1)(i + 2) + a_{k + 1} \\ & = \frac{k(k + 1)(k + 2)(k + 3)} {4} + (k + 1)((k + 1) + 1)((k + 1) + 2) \\ & = \frac{k(k + 1)(k + 2)(k + 3)} {4} + (k + 1)(k + 2)(k + 3) \\ & = \frac{k(k + 1)(k + 2)(k + 3)}{4} + \frac{4 \cdot (k + 1)(k + 2)(k + 3)} {4} \\ \end{align} $
It's easier to factor than expand. Notice the common factor of (k + 1)(k + 2)(k + 3).
- $ S_{k + 1} = \frac{(k + 1)(k + 2)(k + 3)(k + 4)}{4} $
This should be equal to the formula
$ S_k = \frac{k(k + 1)(k + 2)(k + 3)}{4} $
when k = k + 1:
- $ \frac{(k + 1)((k + 1) + 1)((k + 2) + 2)((k + 1) + 3)} {4} = \frac{(k + 1)(k + 2)(k + 3)(k + 4)} {4} $
Since both the basis and the inductive step have been proved, it has now been proved by mathematical induction that S_n holds for all natural n