Difference between revisions of "TADM2E 7.1"
From Algorithm Wiki
(Recovering wiki) |
(Recovering wiki) |
||
Line 1: | Line 1: | ||
== Algorithm == | == Algorithm == | ||
− | Given | + | Given <code>a</code>, the input array, and <code>curr</code>, the derangement built up so far: |
− | # If | + | # If <code>curr</code> represents a complete solution, print it. |
− | # Otherwise, examine all the possibilities for the next element of the derangement. The next element must come from the input array | + | # Otherwise, examine all the possibilities for the next element of the derangement. The next element must come from the input array <code>a</code>. It must not already have been used so far (<code>!curr.contains(a[i]</code>), and it must not be the element at the same position in the input array (<code>i != curr.size()</code>). |
## For each remaining possibility, add it to the current derangement and recurse. | ## For each remaining possibility, add it to the current derangement and recurse. | ||
== Implementation in Java == | == Implementation in Java == | ||
− | + | <pre> | |
public class DerangementGenerator { | public class DerangementGenerator { | ||
public void derangements(int[] a) { | public void derangements(int[] a) { | ||
− | d(a, new LinkedList | + | d(a, new LinkedList<Integer>()); |
} | } | ||
− | public void d(int[] a, LinkedList | + | public void d(int[] a, LinkedList<Integer> curr) { |
if (curr.size() == a.length) | if (curr.size() == a.length) | ||
print(curr); | print(curr); | ||
else { | else { | ||
− | for (int i = 0; i | + | for (int i = 0; i < a.length; i++) { |
− | if (!curr.contains(a[i]) & | + | if (!curr.contains(a[i]) && i != curr.size()) { |
curr.addLast(a[i]); // O(1) | curr.addLast(a[i]); // O(1) | ||
d(a, curr); | d(a, curr); | ||
Line 29: | Line 29: | ||
} | } | ||
− | public void print(List | + | public void print(List<Integer> l) { |
− | for (int i = 0; i | + | for (int i = 0; i < l.size() - 1; i++) { |
− | System.out.print(l.get(i) + | + | System.out.print(l.get(i) + ", "); |
} | } | ||
System.out.println(l.get(l.size() - 1)); | System.out.println(l.get(l.size() - 1)); | ||
Line 37: | Line 37: | ||
public static void main(String[] args) { | public static void main(String[] args) { | ||
− | if (args.length | + | if (args.length < 1) { |
− | System.err.println( | + | System.err.println("Usage: java DerangementGenerator N"); |
System.exit(-1); | System.exit(-1); | ||
} | } | ||
Line 45: | Line 45: | ||
DerangementGenerator dg = new DerangementGenerator(); | DerangementGenerator dg = new DerangementGenerator(); | ||
int[] a = new int[n]; | int[] a = new int[n]; | ||
− | for (int i = 0; i | + | for (int i = 0; i < n; i++) { |
a[i] = i + 1; | a[i] = i + 1; | ||
} | } | ||
Line 52: | Line 52: | ||
} | } | ||
} | } | ||
− | + | </pre> |
Latest revision as of 18:22, 11 September 2014
Algorithm
Given a
, the input array, and curr
, the derangement built up so far:
- If
curr
represents a complete solution, print it. - Otherwise, examine all the possibilities for the next element of the derangement. The next element must come from the input array
a
. It must not already have been used so far (!curr.contains(a[i]
), and it must not be the element at the same position in the input array (i != curr.size()
).- For each remaining possibility, add it to the current derangement and recurse.
Implementation in Java
public class DerangementGenerator { public void derangements(int[] a) { d(a, new LinkedList<Integer>()); } public void d(int[] a, LinkedList<Integer> curr) { if (curr.size() == a.length) print(curr); else { for (int i = 0; i < a.length; i++) { if (!curr.contains(a[i]) && i != curr.size()) { curr.addLast(a[i]); // O(1) d(a, curr); curr.removeLast(); // O(1) } } } } public void print(List<Integer> l) { for (int i = 0; i < l.size() - 1; i++) { System.out.print(l.get(i) + ", "); } System.out.println(l.get(l.size() - 1)); } public static void main(String[] args) { if (args.length < 1) { System.err.println("Usage: java DerangementGenerator N"); System.exit(-1); } int n = Integer.parseInt(args[0]); DerangementGenerator dg = new DerangementGenerator(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = i + 1; } dg.derangements(a); } }