Difference between revisions of "TADM2E 1.15"

From Algorithm Wiki
Jump to: navigation, search
(Recovering wiki)
 
(Recovering wiki)
 
Line 1: Line 1:
<b>Step 1:</b> Show that the statement holds for the basis case <math>n = 1</math><br>
+
<b>Step 1:</b> Show that the statement holds for the basis case <math>n = 1</math><br>
:&lt;math&gt;\frac {1}{i(i+1)} = \frac {n}{n+1}&lt;/math&gt;&lt;br&gt;&lt;br&gt;
+
:<math>\frac {1}{i(i+1)} = \frac {n}{n+1}</math><br><br>
  
:&lt;math&gt;\frac {1}{1(1+1)} = \frac {1}{1+1}&lt;/math&gt;&lt;br&gt;&lt;br&gt;
+
:<math>\frac {1}{1(1+1)} = \frac {1}{1+1}</math><br><br>
  
:&lt;math&gt;\frac {1}{2} = \frac {1}{2}&lt;/math&gt;&lt;br&gt;&lt;br&gt;
+
:<math>\frac {1}{2} = \frac {1}{2}</math><br><br>
  
Since &lt;math&gt;1/2 = 1/2&lt;/math&gt;, the basis case is true.&lt;br&gt;&lt;br&gt;
+
Since <math>1/2 = 1/2</math>, the basis case is true.<br><br>
  
&lt;b&gt;Step 2:&lt;/b&gt; Assume that that summation is true up to ''n''.&lt;br&gt;&lt;br&gt;
+
<b>Step 2:</b> Assume that that summation is true up to ''n''.<br><br>
&lt;b&gt;Step 3:&lt;/b&gt; Show that on the assumption that the summation is true for ''n'', it follows that it is true for ''n + 1''.
+
<b>Step 3:</b> Show that on the assumption that the summation is true for ''n'', it follows that it is true for ''n + 1''.
  
&lt;math&gt;\sum_{i = 1}^{n+1} = \frac{n+1}{n+1+1} = \frac{n}{n+1} + \frac{1}{(n+1)(n+1+1)}&lt;/math&gt;&lt;br&gt;
+
<math>\sum_{i = 1}^{n+1} = \frac{n+1}{n+1+1} = \frac{n}{n+1} + \frac{1}{(n+1)(n+1+1)}</math><br>
&lt;math&gt;\frac{n+1}{n+2} = \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}&lt;/math&gt;&lt;br&gt;
+
<math>\frac{n+1}{n+2} = \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}</math><br>
&lt;math&gt;\frac{n+1}{n+2} = \frac{n(n+2)+1}{(n+1)(n+2)}&lt;/math&gt;&lt;br&gt;
+
<math>\frac{n+1}{n+2} = \frac{n(n+2)+1}{(n+1)(n+2)}</math><br>
&lt;math&gt;\frac{n+1}{n+2} = \frac{n^2+2n+1}{(n+1)(n+2)}&lt;/math&gt;&lt;br&gt;
+
<math>\frac{n+1}{n+2} = \frac{n^2+2n+1}{(n+1)(n+2)}</math><br>
&lt;math&gt;\frac{n+1}{n+2} = \frac{(n+1)(n+1)}{(n+1)(n+2)}&lt;/math&gt;&lt;br&gt;
+
<math>\frac{n+1}{n+2} = \frac{(n+1)(n+1)}{(n+1)(n+2)}</math><br>
&lt;math&gt;\frac{n+1}{n+2} = \frac{(n+1)}{(n+2)}&lt;/math&gt;&lt;br&gt;
+
<math>\frac{n+1}{n+2} = \frac{(n+1)}{(n+2)}</math><br>
  
  
 
QED
 
QED

Latest revision as of 18:22, 11 September 2014

Step 1: Show that the statement holds for the basis case $ n = 1 $

$ \frac {1}{i(i+1)} = \frac {n}{n+1} $

$ \frac {1}{1(1+1)} = \frac {1}{1+1} $

$ \frac {1}{2} = \frac {1}{2} $

Since $ 1/2 = 1/2 $, the basis case is true.

Step 2: Assume that that summation is true up to n.

Step 3: Show that on the assumption that the summation is true for n, it follows that it is true for n + 1.

$ \sum_{i = 1}^{n+1} = \frac{n+1}{n+1+1} = \frac{n}{n+1} + \frac{1}{(n+1)(n+1+1)} $
$ \frac{n+1}{n+2} = \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{n(n+2)+1}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{n^2+2n+1}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{(n+1)(n+1)}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{(n+1)}{(n+2)} $


QED