Difference between revisions of "TADM2E 4.35"
From Algorithm Wiki
(Recovering wiki) |
|||
Line 7: | Line 7: | ||
Having M[0..n-1][0..m-1] and a struct Point {int x, int y}, we could have the following solution: | Having M[0..n-1][0..m-1] and a struct Point {int x, int y}, we could have the following solution: | ||
+ | ``` | ||
Point* findPosition(int key) { | Point* findPosition(int key) { | ||
int row = 0, col = m-1; | int row = 0, col = m-1; | ||
Line 20: | Line 21: | ||
return NULL; | return NULL; | ||
} | } | ||
+ | ``` |
Revision as of 12:59, 30 April 2015
$ O(n+m) $ is necessary and sufficient. Lower bound comes from potentially independent values along second diagonal -- upper bound comes from observing that we can eliminate either a row or a column in each comparison if we start from the lower left corner and walk up or left.
Having M[0..n-1][0..m-1] and a struct Point {int x, int y}, we could have the following solution:
``` Point* findPosition(int key) {
int row = 0, col = m-1; while (row < n && col >= 0) { if (M[row][col] == key) { return new Point(row,col); } else if (M[row][col] > key) { col--; } else row++; } return NULL;
} ```