Difference between revisions of "TADM2E 3.28"
From Algorithm Wiki
(Clean up the code and state that it is Java.) |
m (Slight cleanup) |
||
Line 13: | Line 13: | ||
<pre> | <pre> | ||
public class Multiplication { | public class Multiplication { | ||
− | public static int[] product(int[] x) { | + | public static int[] product(int[] x) { |
int[] M = new int[x.length]; | int[] M = new int[x.length]; | ||
for (int i = 0; i < x.length; i++) { | for (int i = 0; i < x.length; i++) { | ||
− | + | M[i] = product(x, M, i + 1, x.length); | |
} | } | ||
return M; | return M; | ||
+ | } | ||
+ | |||
+ | private static int product(int[] x, int[] y, int i, int j) { | ||
+ | if(i == j) | ||
+ | return productLeft(x, i - 2, j); | ||
+ | |||
+ | return x[i] * productLeft(x, i - 2, j) * productRight(x, i + 1, j); | ||
} | } | ||
Line 35: | Line 42: | ||
return x[i] * productRight(x, i + 1, j); | return x[i] * productRight(x, i + 1, j); | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
} | } | ||
} | } |
Revision as of 09:22, 8 November 2015
We need two passes over X:
1. Calculate cumulative production P and Q:
$ P_0 = 1, P_k=X_k P_{k-1}=\prod_{i=1}^kx_i $
$ Q_n = 1, Q_k=X_k Q_{k+1}=\prod_{i=k}^nx_i $
2. Calculate M:
$ M_k=P_{k-1}Q_{k+1}, k\in[1,n] $
Using Iteration:
Java example:
public class Multiplication { public static int[] product(int[] x) { int[] M = new int[x.length]; for (int i = 0; i < x.length; i++) { M[i] = product(x, M, i + 1, x.length); } return M; } private static int product(int[] x, int[] y, int i, int j) { if(i == j) return productLeft(x, i - 2, j); return x[i] * productLeft(x, i - 2, j) * productRight(x, i + 1, j); } private static int productLeft(int[] x, int i, int j) { if (i < 0) return 1; return x[i] * productLeft(x, i - 1, j); } private static int productRight(int[] x, int i, int j) { if (i >= j) return 1; return x[i] * productRight(x, i + 1, j); } }