Difference between revisions of "TADM2E 1.15"
From Algorithm Wiki
(Recovering wiki) |
(Recovering wiki) |
||
Line 1: | Line 1: | ||
− | + | <b>Step 1:</b> Show that the statement holds for the basis case <math>n = 1</math><br> | |
− | : | + | :<math>\frac {1}{i(i+1)} = \frac {n}{n+1}</math><br><br> |
− | : | + | :<math>\frac {1}{1(1+1)} = \frac {1}{1+1}</math><br><br> |
− | : | + | :<math>\frac {1}{2} = \frac {1}{2}</math><br><br> |
− | Since | + | Since <math>1/2 = 1/2</math>, the basis case is true.<br><br> |
− | + | <b>Step 2:</b> Assume that that summation is true up to ''n''.<br><br> | |
− | + | <b>Step 3:</b> Show that on the assumption that the summation is true for ''n'', it follows that it is true for ''n + 1''. | |
− | + | <math>\sum_{i = 1}^{n+1} = \frac{n+1}{n+1+1} = \frac{n}{n+1} + \frac{1}{(n+1)(n+1+1)}</math><br> | |
− | + | <math>\frac{n+1}{n+2} = \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}</math><br> | |
− | + | <math>\frac{n+1}{n+2} = \frac{n(n+2)+1}{(n+1)(n+2)}</math><br> | |
− | + | <math>\frac{n+1}{n+2} = \frac{n^2+2n+1}{(n+1)(n+2)}</math><br> | |
− | + | <math>\frac{n+1}{n+2} = \frac{(n+1)(n+1)}{(n+1)(n+2)}</math><br> | |
− | + | <math>\frac{n+1}{n+2} = \frac{(n+1)}{(n+2)}</math><br> | |
QED | QED |
Latest revision as of 18:22, 11 September 2014
Step 1: Show that the statement holds for the basis case $ n = 1 $
- $ \frac {1}{i(i+1)} = \frac {n}{n+1} $
- $ \frac {1}{1(1+1)} = \frac {1}{1+1} $
- $ \frac {1}{2} = \frac {1}{2} $
Since $ 1/2 = 1/2 $, the basis case is true.
Step 2: Assume that that summation is true up to n.
Step 3: Show that on the assumption that the summation is true for n, it follows that it is true for n + 1.
$ \sum_{i = 1}^{n+1} = \frac{n+1}{n+1+1} = \frac{n}{n+1} + \frac{1}{(n+1)(n+1+1)} $
$ \frac{n+1}{n+2} = \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{n(n+2)+1}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{n^2+2n+1}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{(n+1)(n+1)}{(n+1)(n+2)} $
$ \frac{n+1}{n+2} = \frac{(n+1)}{(n+2)} $
QED