Difference between revisions of "TADM2E 2.1"
(Recovering wiki) |
(Recovering wiki) |
||
Line 3: | Line 3: | ||
This loop can be expressed as the sum: | This loop can be expressed as the sum: | ||
− | + | <math> | |
\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\sum_{k=1}^{j}1 | \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\sum_{k=1}^{j}1 | ||
− | + | </math> | |
Reducing this, sum by sum from the rhs: | Reducing this, sum by sum from the rhs: | ||
− | + | <math> | |
\begin{align} | \begin{align} | ||
− | & | + | &\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\sum_{k=1}^{j}1 =\\ |
− | & | + | &\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}j =\\ |
− | & | + | &\sum_{i=1}^{n-1}\left(\sum_{j=1}^{n}j - \sum_{j=1}^{i}j\right) =\\ |
− | & | + | &\sum_{i=1}^{n-1}\left(\frac{n(n+1)}{2} - \frac{i(i+1)}{2}\right) =\\ |
− | & | + | &\frac{1}{2}\sum_{i=1}^{n-1}n^2+n-i^2-i =\\ |
− | & | + | &\frac{1}{2}\left((n-1)n^2 + (n-1)n - \left(\frac{n(n+1)(2n+1)}{6} - n^2\right) - |
\left(\frac{n(n+1)}{2} - n\right)\right) =\\ | \left(\frac{n(n+1)}{2} - n\right)\right) =\\ | ||
− | & | + | &f(n) = \frac{n(n(n+1))}{2} - \frac{n(n+1)(2n+1)}{12} - \frac{n(n+1)}{4} |
\end{align} | \end{align} | ||
− | + | </math> | |
n=1 gives zero; | n=1 gives zero; | ||
Line 28: | Line 28: | ||
== Alternative Derivation == | == Alternative Derivation == | ||
− | + | <math> | |
\begin{align} | \begin{align} | ||
− | & | + | &mystery(n)=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\sum_{k=1}^{j} 1\\ |
− | & | + | &=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}j\\ |
\end{align} | \end{align} | ||
− | + | </math> | |
− | Taking the following well-known formula for the sum of the integers | + | Taking the following well-known formula for the sum of the integers <math>1</math> to <math>n</math>:- |
− | + | <math> | |
\sum_{x=1}^{n}x = \frac{1}{2}n(n + 1) | \sum_{x=1}^{n}x = \frac{1}{2}n(n + 1) | ||
− | + | </math> | |
And noting that:- | And noting that:- | ||
− | + | <math> | |
\sum_{j=i+1}^{n}j = \sum_{j=1}^{n}j - \sum_{j=1}^{i}j | \sum_{j=i+1}^{n}j = \sum_{j=1}^{n}j - \sum_{j=1}^{i}j | ||
− | + | </math> | |
We continue our derivation thus:- | We continue our derivation thus:- | ||
− | + | <math> | |
\begin{align} | \begin{align} | ||
− | & | + | &=\sum_{i=1}^{n-1}(\frac{1}{2}n(n+1) - \frac{1}{2}i(i+1))\\ |
− | & | + | &=\frac{1}{2}n(n-1)(n+1) - \frac{1}{2}\sum_{i=1}^{n-1}(i^2 + i)\\ |
\end{align} | \end{align} | ||
− | + | </math> | |
− | Given our formula for the sum of integers, substituting | + | Given our formula for the sum of integers, substituting <math>n-1</math> for <math>n</math> gives us:- |
− | + | <math> | |
\sum_{x=1}^{n-1}x=\frac{1}{2}(n-1)((n-1)+1)=\frac{1}{2}n(n-1) | \sum_{x=1}^{n-1}x=\frac{1}{2}(n-1)((n-1)+1)=\frac{1}{2}n(n-1) | ||
− | + | </math> | |
Thus continuing with our derivation:- | Thus continuing with our derivation:- | ||
− | + | <math> | |
\begin{align} | \begin{align} | ||
− | & | + | &=\frac{1}{2}n(n-1)(n+1)- \frac{1}{2}\frac{1}{2}n(n-1) - \frac{1}{2}\sum_{i=1}^{n-1}i^2\\ |
− | & | + | &=\frac{1}{2}n(n-1)(n + 1 - \frac{1}{2}) - \frac{1}{2}\sum_{i=1}^{n-1}i^2\\ |
− | & | + | &=\frac{1}{2}n(n-1)(n + \frac{1}{2}) - \frac{1}{2}\sum_{i=1}^{n-1}i^2\\ |
\end{align} | \end{align} | ||
− | + | </math> | |
− | Let us consider the well-known formula for the sum of the squares of the integers between | + | Let us consider the well-known formula for the sum of the squares of the integers between <math>1</math> and <math>n</math>:- |
− | + | <math> | |
\sum_{x=1}^{n}x^2=\frac{1}{6}n(n+1)(2n+1) | \sum_{x=1}^{n}x^2=\frac{1}{6}n(n+1)(2n+1) | ||
− | + | </math> | |
− | As before, let us substitute | + | As before, let us substitute <math>n-1</math> for <math>n</math>:- |
− | + | <math> | |
\sum_{x=1}^{n-1}x^2=\frac{1}{6}(n-1)((n-1)+1)(2(n-1)+1)=\frac{1}{6}n(n-1)(2n-1) | \sum_{x=1}^{n-1}x^2=\frac{1}{6}(n-1)((n-1)+1)(2(n-1)+1)=\frac{1}{6}n(n-1)(2n-1) | ||
− | + | </math> | |
Substituting this into our derivation gives us:- | Substituting this into our derivation gives us:- | ||
− | + | <math> | |
\begin{align} | \begin{align} | ||
− | & | + | &=\frac{1}{2}n(n-1)(n + \frac{1}{2}) - \frac{1}{2}\frac{1}{6}n(n-1)(2n - 1)\\ |
− | & | + | &=\frac{1}{2}n(n-1)(n + \frac{1}{2} - \frac{1}{6}(2n-1))\\ |
− | & | + | &=\frac{1}{2}n(n-1)(n + \frac{1}{2} - \frac{1}{3}n + \frac{1}{6})\\ |
− | & | + | &=\frac{1}{2}n(n-1)(\frac{2}{3}n + \frac{2}{3})\\ |
− | & | + | &=\frac{1}{3}n(n-1)(n+1) |
\end{align} | \end{align} | ||
− | + | </math> | |
− | Thus the solution is | + | Thus the solution is <math>mystery(n)=\frac{1}{3}n(n-1)(n+1)</math>. This is the equivalent to the solution given by the previous derivation. |
− | The Big-Oh complexity of this function (ignoring constants) is O(n^3), as the RAM model dictates that each iteration of the increment of | + | The Big-Oh complexity of this function (ignoring constants) is O(n^3), as the RAM model dictates that each iteration of the increment of <math>r</math> is a time-step. We can ignore the first and last line's contribution to running time for the purposes of Big-Oh, as they do not contribute to the growth of the time taken with input size. |
Return to [[Algo-analysis-TADM2E]] ... | Return to [[Algo-analysis-TADM2E]] ... |
Latest revision as of 18:23, 11 September 2014
2-1 ans
This loop can be expressed as the sum:
$ \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\sum_{k=1}^{j}1 $
Reducing this, sum by sum from the rhs:
$ \begin{align} &\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\sum_{k=1}^{j}1 =\\ &\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}j =\\ &\sum_{i=1}^{n-1}\left(\sum_{j=1}^{n}j - \sum_{j=1}^{i}j\right) =\\ &\sum_{i=1}^{n-1}\left(\frac{n(n+1)}{2} - \frac{i(i+1)}{2}\right) =\\ &\frac{1}{2}\sum_{i=1}^{n-1}n^2+n-i^2-i =\\ &\frac{1}{2}\left((n-1)n^2 + (n-1)n - \left(\frac{n(n+1)(2n+1)}{6} - n^2\right) - \left(\frac{n(n+1)}{2} - n\right)\right) =\\ &f(n) = \frac{n(n(n+1))}{2} - \frac{n(n+1)(2n+1)}{12} - \frac{n(n+1)}{4} \end{align} $
n=1 gives zero; and order is O((n^3)/3)
Alternative Derivation
$ \begin{align} &mystery(n)=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\sum_{k=1}^{j} 1\\ &=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}j\\ \end{align} $
Taking the following well-known formula for the sum of the integers $ 1 $ to $ n $:-
$ \sum_{x=1}^{n}x = \frac{1}{2}n(n + 1) $
And noting that:-
$ \sum_{j=i+1}^{n}j = \sum_{j=1}^{n}j - \sum_{j=1}^{i}j $
We continue our derivation thus:-
$ \begin{align} &=\sum_{i=1}^{n-1}(\frac{1}{2}n(n+1) - \frac{1}{2}i(i+1))\\ &=\frac{1}{2}n(n-1)(n+1) - \frac{1}{2}\sum_{i=1}^{n-1}(i^2 + i)\\ \end{align} $
Given our formula for the sum of integers, substituting $ n-1 $ for $ n $ gives us:-
$ \sum_{x=1}^{n-1}x=\frac{1}{2}(n-1)((n-1)+1)=\frac{1}{2}n(n-1) $
Thus continuing with our derivation:-
$ \begin{align} &=\frac{1}{2}n(n-1)(n+1)- \frac{1}{2}\frac{1}{2}n(n-1) - \frac{1}{2}\sum_{i=1}^{n-1}i^2\\ &=\frac{1}{2}n(n-1)(n + 1 - \frac{1}{2}) - \frac{1}{2}\sum_{i=1}^{n-1}i^2\\ &=\frac{1}{2}n(n-1)(n + \frac{1}{2}) - \frac{1}{2}\sum_{i=1}^{n-1}i^2\\ \end{align} $
Let us consider the well-known formula for the sum of the squares of the integers between $ 1 $ and $ n $:-
$ \sum_{x=1}^{n}x^2=\frac{1}{6}n(n+1)(2n+1) $
As before, let us substitute $ n-1 $ for $ n $:-
$ \sum_{x=1}^{n-1}x^2=\frac{1}{6}(n-1)((n-1)+1)(2(n-1)+1)=\frac{1}{6}n(n-1)(2n-1) $
Substituting this into our derivation gives us:-
$ \begin{align} &=\frac{1}{2}n(n-1)(n + \frac{1}{2}) - \frac{1}{2}\frac{1}{6}n(n-1)(2n - 1)\\ &=\frac{1}{2}n(n-1)(n + \frac{1}{2} - \frac{1}{6}(2n-1))\\ &=\frac{1}{2}n(n-1)(n + \frac{1}{2} - \frac{1}{3}n + \frac{1}{6})\\ &=\frac{1}{2}n(n-1)(\frac{2}{3}n + \frac{2}{3})\\ &=\frac{1}{3}n(n-1)(n+1) \end{align} $
Thus the solution is $ mystery(n)=\frac{1}{3}n(n-1)(n+1) $. This is the equivalent to the solution given by the previous derivation.
The Big-Oh complexity of this function (ignoring constants) is O(n^3), as the RAM model dictates that each iteration of the increment of $ r $ is a time-step. We can ignore the first and last line's contribution to running time for the purposes of Big-Oh, as they do not contribute to the growth of the time taken with input size.
Return to Algo-analysis-TADM2E ...