Difference between revisions of "TADM2E 1.16"

From Algorithm Wiki
Jump to: navigation, search
(Recovering wiki)
 
(Recovering wiki)
 
Line 1: Line 1:
First we must assume that <math>\frac {n^3 + 2n}{3} = a</math>, where <math>a \in N</math>.
+
First we must assume that <math>\frac {n^3 + 2n}{3} = a</math>, where <math>a \in N</math>.
  
The case when &lt;math&gt;n = 0&lt;/math&gt; is pretty obvious, so let's go straight to &lt;math&gt;n = n + 1&lt;/math&gt;:
+
The case when <math>n = 0</math> is pretty obvious, so let's go straight to <math>n = n + 1</math>:
  
  
We get: &lt;math&gt;\frac {(n + 1)^3 + 2(n + 1)}{3} = \frac { n^3 + 3n^2 + 3n + 1 + 2n + 2 }{3}&lt;/math&gt;.
+
We get: <math>\frac {(n + 1)^3 + 2(n + 1)}{3} = \frac { n^3 + 3n^2 + 3n + 1 + 2n + 2 }{3}</math>.
  
 
Now let's rearrange the parts like this:
 
Now let's rearrange the parts like this:
&lt;math&gt;\frac {n^3 + 2n}{3} + \frac {3n^2 + 3n + 3}{3}&lt;/math&gt;, and we can see, that the left-side part equals &lt;math&gt;a&lt;/math&gt;, and the right-side is clearly divisible by 3, thus the &lt;math&gt;n^3 + 2n&lt;/math&gt; is proven to be divisible by 3.
+
<math>\frac {n^3 + 2n}{3} + \frac {3n^2 + 3n + 3}{3}</math>, and we can see, that the left-side part equals <math>a</math>, and the right-side is clearly divisible by 3, thus the <math>n^3 + 2n</math> is proven to be divisible by 3.

Latest revision as of 18:22, 11 September 2014

First we must assume that $ \frac {n^3 + 2n}{3} = a $, where $ a \in N $.

The case when $ n = 0 $ is pretty obvious, so let's go straight to $ n = n + 1 $:


We get: $ \frac {(n + 1)^3 + 2(n + 1)}{3} = \frac { n^3 + 3n^2 + 3n + 1 + 2n + 2 }{3} $.

Now let's rearrange the parts like this: $ \frac {n^3 + 2n}{3} + \frac {3n^2 + 3n + 3}{3} $, and we can see, that the left-side part equals $ a $, and the right-side is clearly divisible by 3, thus the $ n^3 + 2n $ is proven to be divisible by 3.