Difference between revisions of "TADM2E 3.28"

From Algorithm Wiki
Jump to: navigation, search
(Clean up the code and state that it is Java.)
m (Slight cleanup)
Line 13: Line 13:
 
<pre>
 
<pre>
 
public class Multiplication {
 
public class Multiplication {
   public static int[] product(int[] x) {  
+
   public static int[] product(int[] x) {
 
     int[] M = new int[x.length];
 
     int[] M = new int[x.length];
  
 
     for (int i = 0; i < x.length; i++) {
 
     for (int i = 0; i < x.length; i++) {
  M[i] = product(x, M, i + 1, x.length);  
+
      M[i] = product(x, M, i + 1, x.length);  
 
     }
 
     }
  
 
     return M;
 
     return M;
 +
  }
 +
 +
  private static int product(int[] x, int[] y, int i, int j) {
 +
    if(i == j)
 +
      return productLeft(x, i - 2, j);
 +
 
 +
    return x[i] * productLeft(x, i - 2, j) * productRight(x, i + 1, j);
 
   }
 
   }
  
Line 35: Line 42:
  
 
     return x[i] * productRight(x, i + 1, j);
 
     return x[i] * productRight(x, i + 1, j);
  }
 
 
  private static int product(int[] x, int[] y, int i, int j) {
 
    if(i == j)
 
      return productLeft(x, i - 2, j);
 
 
 
    return x[i] * productLeft(x, i - 2, j) * productRight(x, i + 1, j);
 
 
   }
 
   }
 
}
 
}

Revision as of 09:22, 8 November 2015

We need two passes over X:

1. Calculate cumulative production P and Q:
$ P_0 = 1, P_k=X_k P_{k-1}=\prod_{i=1}^kx_i $
$ Q_n = 1, Q_k=X_k Q_{k+1}=\prod_{i=k}^nx_i $

2. Calculate M:
$ M_k=P_{k-1}Q_{k+1}, k\in[1,n] $


Using Iteration:

Java example:

public class Multiplication {
  public static int[] product(int[] x) {
    int[] M = new int[x.length];

    for (int i = 0; i < x.length; i++) {
      M[i] = product(x, M, i + 1, x.length); 
    }

    return M;
  }

  private static int product(int[] x, int[] y, int i, int j) {
    if(i == j)
      return productLeft(x, i - 2, j);
  
    return x[i] * productLeft(x, i - 2, j) * productRight(x, i + 1, j);
  }

  private static int productLeft(int[] x, int i, int j) {
    if (i < 0)
      return 1;

    return x[i] * productLeft(x, i - 1, j);
  }

  private static int productRight(int[] x, int i, int j) {
    if (i >= j)
      return 1;

    return x[i] * productRight(x, i + 1, j);
  }
}

--Tnoumessi (talk) 00:21, 8 April 2015 (EDT)