Difference between revisions of "TADM2E 1.13"
(Recovering wiki) |
(No difference)
|
Revision as of 18:13, 11 September 2014
Call the statement <math>S_n</math> and the general term <math>a_n</math><br>
<b>Step 1:</b> Show that the statement holds for the basis case <math>n = 0</math><br>
- <math>a_0 = 0 \cdot (0 + 1)(0 + 2) = 0</math>
<br><br>
- <math>S_0 = \frac {0 \cdot (0 + 1)(0 + 2)(0 + 3)} {4} = \frac {0} {4} = 0 </math><br>
Since <math>a_n = S_n</math>, the basis case is true.<br><br>
<b>Step 2:</b> Assume that <math>n = k</math> holds.
- <math>S_k = \frac {k(k + 1)(k + 2)(k + 3)} {4}</math><br><br>
<b>Step 3:</b> Show that on the assumption that the summation is true for k, it follows that it is true for k + 1.
- <math>
\begin{align} S_{k + 1} & = \sum_{i = 1}^k i(i + 1)(i + 2) + a_{k + 1} \\
& = \frac{k(k + 1)(k + 2)(k + 3)} {4} + (k + 1)((k + 1) + 1)((k + 1) + 2) \\ & = \frac{k(k + 1)(k + 2)(k + 3)} {4} + (k + 1)(k + 2)(k + 3) \\ & = \frac{k(k + 1)(k + 2)(k + 3)}{4} + \frac{4 \cdot (k + 1)(k + 2)(k + 3)} {4} \\
\end{align} </math><br>
It's easier to factor than expand. Notice the common factor of (k + 1)(k + 2)(k + 3).
- <math>S_{k + 1} = \frac{(k + 1)(k + 2)(k + 3)(k + 4)}{4}</math><br>
This should be equal to the formula <math>S_k = \frac{k(k + 1)(k + 2)(k + 3)}{4}</math> when k = k + 1:<br>
- <math>\frac{(k + 1)((k + 1) + 1)((k + 2) + 2)((k + 1) + 3)} {4} =
\frac{(k + 1)(k + 2)(k + 3)(k + 4)} {4}</math><br><br>
Since both the basis and the inductive step have been proved, it has now been proved by mathematical induction that S_n holds for all natural n