TADM2E 7.1
From Algorithm Wiki
Algorithm
Given a
, the input array, and curr
, the derangement built up so far:
- If
curr
represents a complete solution, print it. - Otherwise, examine all the possibilities for the next element of the derangement. The next element must come from the input array
a
. It must not already have been used so far (!curr.contains(a[i]
), and it must not be the element at the same position in the input array (i != curr.size()
).- For each remaining possibility, add it to the current derangement and recurse.
Implementation in Java
public class DerangementGenerator { public void derangements(int[] a) { d(a, new LinkedList<Integer>()); } public void d(int[] a, LinkedList<Integer> curr) { if (curr.size() == a.length) print(curr); else { for (int i = 0; i < a.length; i++) { if (!curr.contains(a[i]) && i != curr.size()) { curr.addLast(a[i]); // O(1) d(a, curr); curr.removeLast(); // O(1) } } } } public void print(List<Integer> l) { for (int i = 0; i < l.size() - 1; i++) { System.out.print(l.get(i) + ", "); } System.out.println(l.get(l.size() - 1)); } public static void main(String[] args) { if (args.length < 1) { System.err.println("Usage: java DerangementGenerator N"); System.exit(-1); } int n = Integer.parseInt(args[0]); DerangementGenerator dg = new DerangementGenerator(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = i + 1; } dg.derangements(a); } }