TADM2E 2.36
$ \sum\limits_{i=1}^{n/2} \sum\limits_{j=i}^{n-i} \sum\limits_{k=1}^{j} 1 $
The innermost summation is just j since the distance in the progression in 1.
$ \sum\limits_{i=1}^{n/2} \sum\limits_{j=i}^{n-i} j $
For the middle summation we can use Gauss' rule.
$ \sum\limits_{i=1}^{n/2} \frac{1}{2} * (n - i) * (n - i + i) = \sum\limits_{i=1}^{n/2} \frac{1}{2} * (n - i) * (n) $
We can rule out the constants.
$ n*\frac{1}{2}*\sum\limits_{i=1}^{n/2} (n - i) $
We can now use the linearity of summations to get simpler ones.
$ n*\frac{1}{2}*[\sum\limits_{i=1}^{n/2} n - \sum\limits_{i=1}^{n/2} i] $
In the first summation n is just a constant so we can bring it outside and the for the second summation we use, once again, Gauss' rule. The first summation turns into $ \frac{n}{2} $.
$ n^{2}*\frac{1}{2}*[\frac{n}{2} - (\frac{n}{2}*(\frac{n}{2} + 1))*\frac{1}{2}] = \frac{n^3}{16} $