TADM2E 3.13
Before outlining the solution, consider that a binary tree can satisfy the O(logn) requirement for both the Add(i, y) and Partial-sum(i) functions. In so doing, we initialize the binary tree with all non-leaf nodes equal to the sum of all values of nodes of their children, where each node has the following structure:
class BNode { int min; // minimum index of A[] contained by a child int max; // maximum index of A[] contained by a child int value; // sum of A[min..max] }
Then, $ Add(i, y) $ will add $ y $ to the value of each tree node, starting from the root, as well as the leaves defined in $ A $. Likewise, $ Partial-sum(i) $ is implemented recursively using the structure of the tree to ensure a clean partition of sections of A.
Unfortunately, the problem allows only an n-size array as a workspace. However, consider that a binary tree with n leaves will have no more than n - 1 non-leaf nodes. Using the heapsort's method of organizing the non-leaf nodes in an array (see heapsort), we can satisfy this requirement:
Let $ S[1..m] (m < n) $ be such an array of BNode objects.
$ S[0] $ is the root, with value equal to the sum of $ A[0..n] $. $ S[1] $ is root's left child, with value equal to the sum $ A[0..n/2] $. $ S[2] $ is root's right child, with value equal to the sum of $ A[n/2+1..n] $.
In general, $ S[i] $ will have value equal to the sum of $ S[i] $'s children at $ S[2*i+1] $ and $ S[2*i +2] $. See solution in Java below.
public class SumKeeper { private float[] A; private BNode[] S; private int sMax; class BNode { BNode(int min, int max, float value) { this.min = min; this.max = max; this.value = value; } int min; int max; float value; } public SumKeeper(float[] A) { this.A = A; int ln2 = (int)Math.ceil(Math.log(A.length) / Math.log(2)); this.S = new BNode[(0x1 << ln2) - 1]; initS(0, A.length - 1, 0); } private void initS(int min, int max, int sNode) { if(sNode > sMax) sMax = sNode; if(min >= max) S[sNode] = new BNode(min, max, A[min]); else if (min == max - 1) S[sNode] = new BNode(min, max, A[min] + A[max]); else { int mid = min + (max - min) / 2; initS(min, mid, 2 * sNode + 1); initS(mid + 1, max, 2 * sNode + 2); float sum = S[2 * sNode + 1].value + S[2 * sNode + 2].value; S[sNode] = new BNode(min, max, sum); } } public void add(int i, float y) { if(i - 1 > A.length) throw new IndexOutOfBoundsException(); A[i] += y; addS(i, y, 0); } private void addS(int i, float y, int sNode) { if(sNode > sMax) return; S[sNode].value += y; int mid = S[sNode].min + (S[sNode].max - S[sNode].min) / 2; if(mid >= i) { addS(i, y, 2 * sNode + 1); } else { addS(i, y, 2 * sNode + 2); } } public float partialSum(int i) { return partialSum(i, 0); } private float partialSum(int i, int sNode) { if(sNode > sMax) return A[i]; int mid = S[sNode].min + (S[sNode].max - S[sNode].min) / 2; if(S[sNode].max == i) { return S[sNode].value; } else if(mid >= i) { return partialSum(i, 2 * sNode + 1); } else { return S[2 * sNode + 1].value + partialSum(i, 2 * sNode + 2); } } }